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Abstract—In mobile ad hoc networks, there are many applications in which mobile users share information, e.g., collaborative rescue

operations at a disaster site and exchange of word-of-mouth information in a shopping mall. For such applications, improving data

availability is a significant issue and various studies have been conducted with this aim. However, each of these conventional works

assumed a particular mobility model and did not fully investigate the influence of the mobility on the proposed approach. In this paper,

we aim to quantify the influences of mobility on data availability from various perspectives. We assume neither specific applications nor

specific protocols but we propose and quantify several metrics that affect data availability. We also report results of some experiments

that measure the proposed metrics assuming several typical mobility models.

Index Terms—Mobile ad hoc networks, data availability, data replication, data diffusion, pervasive computing.

Ç

1 INTRODUCTION

1.1 Background and Motivation

RECENT advancements in wireless communication and
the miniaturization of computers have led to a new

concept called the mobile ad hoc network (MANET), where
two or more mobile nodes can form a temporary network
without need of any existing network infrastructure or
centralized administration [2], [3]. In MANETs, mobile
nodes act as routers themselves, keeping route information
to reach other mobile nodes, and helping forward data
packets sent from one mobile node to another.

At the early stage of MANET research, most studies
focused on routing protocols to support communications
among mobile nodes connected to each other by one-hop/
multihop links [7], [17], [26]. Such routing protocols are
useful for applications in which mobile users directly
communicate with each other, e.g., video conferencing
systems. However, in MANETs, there are also many
applications in which mobile nodes share data and access
data held by other mobile nodes. Typical examples are
collaborative rescue operations at a disaster site, military
operations, sensor networks, and exchange of word-of-
mouth information in a shopping mall.

For such applications, preventing the deterioration of
data availability at the point of network partitioning is a
very significant issue [10], [18]. More specifically, as mobile
nodes move freely in MANETs, disconnections often occur,
and this causes data in two separated networks to become
inaccessible to each other. For example, in Fig. 1, when
disconnection happens between two nodes, data item D1

becomes inaccessible to mobile nodes on the right side,
while data item D2 becomes inaccessible to mobile nodes on

the left side. There are two major research trends to address
this issue: data replication [5], [9], [10], [11], [12], [23], [33]
and data diffusion (dissemination) [13], [14], [18], [20], [24],
[31], [34], [35]. The former topic addresses replication or
caching of data items whose sizes are relatively large. It
focuses on data allocation (relocation), consistency manage-
ment (synchronization), location management (data looking
up), etc. The latter topic addresses effective and efficient
dissemination of data items whose sizes are relatively small
in sparse and partitionable MANETs.

The results of these conventional works have revealed
that mobility heavily affects data availability; high mobility
sometimes increases data availability, e.g., a mobile node
relays data between two separated (partitioned) networks,
and it sometimes decreases, e.g., a mobile node that holds
hot (popular) data disconnects from the network. However,
most of the conventional works assumed a particular
mobility model (movement pattern of mobile nodes) and
only examined the influence of the mobility model on the
performance of the proposed approach. In other words,
they did not give any general insights on the relationship
between mobility and data availability.

1.2 Contributions

In this paper, we aim to quantify the influences of mobility
on data availability from various perspectives. We do not
assume specific applications nor specific data replication or
diffusion protocols, but propose several general metrics to
quantify data availability. Since there are typically two
approaches for improving data availability in MANET
applications in which data are shared among mobile users
or devices: 1) data replication and 2) data diffusion, the
proposed metrics are defined to examine the impact of
mobility on the performance of these two approaches.

For data replication protocols, significant factors that
affect the performance are how many data items can be
replicated on connected mobile nodes and how often and
how much the groups of connected mobile nodes change.
Therefore, we define few metrics that represent the total
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size of data storage of connected mobile nodes and the
degree of change in the storage size. For data diffusion
protocols, significant factors for performance are how fast
data items can be distributed to a large number of mobile
nodes. Therefore, we define few metrics that represent the
number of mobile nodes to which a mobile node connects
during a certain unit of time.

Then, we report the results of some experiments that
measure the proposed metrics assuming several typical
mobility models: random walk, random waypoint [3],
Manhattan mobility, and reference point group mobility
[15]. We also report the results of experiments using two
kinds of real mobility traces: taxi cabs [4] and humans [28].

In summary, the contributions of this paper are as follows:

1. Because the proposed metrics for quantifying the
impact of mobility on data availability are general
and do not assume particular mobility models, they
can be used for any applications in which mobile
users or devices share data with each other. There-
fore, these metrics would be helpful for system
developers and researchers to design and examine
data replication or data diffusion protocols by taking
the impact of the mobility model into account.

2. The experiment part shows examples of how to
apply the proposed metrics to the given mobility
models and how to examine the impact of the
mobility pattern. If the mobility pattern of the
assumed application is just or almost same as a
typical mobility model shown in this paper, our
experimental results can be directly used for the
design of the protocols for the application. Even if
the mobility pattern of the assumed application is
different from the typical ones shown in this paper,
its impact on data availability can be examined in
the same way as we did in our experiments using
typical mobility models and real traces.

3. The experimental results would be useful for
reviewing the performance of the conventional
protocols on typical mobility models shown in this
paper. Specifically, while the conventional works
evaluated the proposed protocols in terms of
particular performance metrics, the results have
not been deeply examined in most cases. Here, our
experimental results can give reasonable explana-
tions on the performance of these conventional
protocols and make their advantages and disadvan-
tages more clear.

1.3 Paper Organization

The remainder of this paper is organized as follows: In
Section 2, we introduce some related work. In Section 3, we
define metrics to quantify the influences of mobility on data

availability, some of which are new metrics proposed in this
paper. In Section 4, we report the results of experiments that
measure the proposed metrics on several typical mobility
models. We conclude the paper in Section 5.

2 RELATED WORK

In recent years, much research has been conducted to
investigate the influences of mobility on network perfor-
mance such as the efficiency of routing protocols [19], [21].
Because the main objectives of routing protocols are finding
destinations and forwarding data packets with low message
overhead in a dynamically changing network topology, it is
known that mobility heavily affects protocol performance.
These studies are similar to our work because both
approaches aim at investigating the influence of mobility
on system performance. However, these conventional
works mainly concentrated on link stability and node
distribution in the assumed area. This is because routing
protocols support communications between two connected
mobile nodes, and these two metrics directly affect how
often and dynamically paths between nodes change, i.e.,
they affect protocol performance. On the contrary, data
availability is affected by network partitioning; thus, other
metrics to quantify network partitions are needed.

Related to the above research, various new mobility
models that seem more realistic than the existing ones have
been proposed [15], [16], [22], [25], [27]. These works also
reported the results of experiments that measured the
performance metrics on the proposed models. Since the
proposal of mobility models is outside the scope of this
paper, we choose several typical mobility models to
examine our proposed metrics.

Some conventional works studied the influences of
mobility on data availability in MANETs [1], [8]. In [1],
the authors mathematically defined and analyzed some
metrics that represent the impacts on information diffusion
in MANETs. Among these metrics, the estimated number of
encountered nodes is the measurement for representing
how data are rapidly disseminated. Here, encountered
nodes are defined for each node as nodes with which it
experienced a direct connection by a one-hop wireless link,
i.e., that are located within its communication range.
However, this metric does not truly represent the rapidness
of data dissemination because data can be transmitted not
only to nodes within the communication range of each
other, but also to nodes connected by multihop links. Our
proposed metrics take this fact into account.

The conventional work that is most relevant to our work
has been reported in [8]. To our best knowledge, this is the
first and only work that aims to quantify network
partitioning. In [8], the authors proposed five metrics.
Three of them are network wide metrics: number of
partitions, size of partitions, and partition change ratio.
The rest are node-centric metrics: node partition change rate
and node separation time. However, these metrics are not
enough to fully examine the influences of mobility on data
availability. In terms of data availability, the first two
metrics represent the capacity of data storage (memory
space) of each partition, e.g., the larger the partition is, the
more data can be stored in it. The other three metrics just
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represent how frequently members of each partition change
or how long before each pair of two nodes disconnects.
More specifically, these metrics cannot distinguish whether
only one node disconnects from the partition or the
partition is split into two partitions with the same size.
Also, they do not represent how many nodes each node
connects with at a certain interval. Thus, they do not truly
represent the dynamism of partitions. In terms of data
availability, not only the capacity but also the dynamism is
a significant factor. In this paper, we propose new metrics
to represent the dynamism of partitions in MANETs.

In [30], the authors present three metrics that are
complete and smallest for distinguishing between typical
measured and canonical network topologies including the
Internet. Then, these metrics were used for qualitatively
matching these measured and canonical network topologies
with topologies generated by several network generators.
Although the paper [30] does not assume MANET,
determining the complete and smallest set of performance
metrics is also a significant issue in MANET. Finding the
minimum set of metrics that can qualitatively distinguish
between given network types is a problem that has a clear
solution. On the other hand, we do not assume such a
concrete (solvable) problem because requirements for
quantifying the impact of mobility are different according
to the applications and situations. Rather, we aim to
quantify the impact of mobility on data availability to
briefly grasp the qualitative characteristics (not qualitative
distinctions) of any given mobility patterns. Therefore, it is
impossible to provide the complete and smallest metrics.
However, following the approach in [30], we might be able
to qualitatively distinguish between and match movement
patterns in real networks and typical mobility models by
using performance metrics for quantifying the impact of
mobility. We think that this is an interesting topic we
should address in the future.

3 METRICS TO QUANTIFY NETWORK DYNAMISM

In this section, we propose new metrics to quantify the
influences of mobility on data availability.

3.1 Preliminary

First, we explain our assumed system model. m nodes
exist in the entire network. The set of all mobile nodes in
the system is denoted by MM ¼ fM1;M2; . . . ;Mmg, where
Mk ðk ¼ 1; . . . ;mÞ is a node identifier.

The communication range of each mobile node is
expressed by a circle with radius C, i.e., the communication
ranges of all the nodes are of the same size; thus, every
wireless link is bidirectional. This assumption is for
simplicity, but we can deal with more realistic situations in
which nodes may have different or noncircular communica-
tion ranges by ignoring unidirectional links as many network
and application protocols do. The network can be partitioned
only due to the limitation of a node’s communication range.
In this paper, a partition denotes a set of mobile nodes that
have (one-hop/multihop) communication paths between
two arbitrary nodes, and no path exists between any pair of
nodes in different partitions. Here, we simply call mobile
nodes in the same partition connected mobile nodes.

Based on the system model, we define the terms used in
this paper. We observe the proposed metrics during time
interval T . We further divide T into l fragments with the
same size t, i.e., T ¼ l � t, and ti denotes the time when the ith
fragment in T begins (i ¼ 1; . . . ; l). We calculate the metrics
as statistics of l times observations. ni denotes the number of
partitions that exist in the entire network at time ti. We
assume that each of the ni partitions (ni sets of nodes) is
assigned a partition identifier Pi;j ðj ¼ 1; . . . ; niÞ in descend-
ing order of the number of nodes in the partition, i.e., Pi;1
contains the largest number of nodes at time ti.

3.2 Metrics on Capacity and Stability

First, we define five metrics that represent the storage
capacity and stability of partitions.

3.2.1 Average Size of Partitions

This metric is defined as the average number of mobile
nodes in each partition, which was also used in [8].
Formally, it is expressed by the following equation:

AvgSize ¼ l �m
�Xl

i¼1

ni: ð1Þ

3.2.2 Distribution of Partition Sizes

We believe that the average size of partitions is not a very
significant metric since it treats the two cases equally:
1) every partition has almost the same size and 2) one
partition is very large and the others are very small. In terms
of storage capacity of partitions, the distribution of partition
sizes (numbers of nodes in partitions) is more significant
than their average and is heavily affected by the adopted
mobility model. Therefore, we define the distribution of
partition sizes as a new metric by the following equation:

ParSizeh ¼
Pl

i¼1

Pni
j¼1 eqðh; jPi;jjÞPl
i¼1 ni

ðh ¼ 1; . . . ;mÞ;

where eqðx; yÞ ¼
1; if x ¼ y;
0; otherwise ðx 6¼ yÞ:

�

ð2Þ

Here, this metric corresponds to the histogram of occur-
rence ratios of partitions with each partition size.

3.2.3 Sizes of Partitions Belonged to

This metric is from the viewpoint of each mobile node and is
defined as the histogram that represents the distribution of
the sizes of the partitions to which the node belonged. This
metric becomes almost equal to the distribution of partition
sizes explained above if every mobile node randomly moves
around in the whole area. However, if the movement
patterns of mobile nodes have some locality or specific
relationships with others, e.g., group mobility, this metric
differs from the network-wide metric. This metric for mobile
node Mk is expressed by the following equation:

SizeParBelk;h

¼
Pl

i¼1 eqðh; jbelðMk; tiÞjÞ
l

ðh ¼ 1; . . . ;mÞ:
ð3Þ
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Here, belðMk; tiÞ is a function to return a partition that
contains Mk as a member at time ti.

3.2.4 Change in Size of Partitions Belonged to

This metric is also from the viewpoint of each mobile node
and is defined as the histogram that represents how much
the sizes of the partitions to which the node has belonged
change, where the value ranges from 1�m (negative value)
to m� 1. It aims at making a further consideration of the
distribution of sizes of the partitions belonged to and helps
to quantify their stability. The metric for mobile node Mk is
expressed by the following equation:

ChgSizePark;h

¼
Pl�1

i¼1 eqðh; jbelðMk; tiþ1Þj � jbelðMk; tiÞjÞ
l� 1

ðh ¼ 1�m; . . . ;m� 1Þ:

ð4Þ

3.2.5 Distribution of Connected Nodes

This metric is also from the viewpoint of each mobile node
and is defined as the histogram representing the ratio of the
duration during which the node is connected to each node
to the entire observation time. This represents the stability
of each node for sharing data. The metric for mobile node
Mk is expressed by the following equation:

DistConnNodek;k0

¼
Pl

i¼1 seqðbelðMk; tiÞ; belðMk0 ; tiÞÞ
l

ðk0 ¼ 1; . . . ;mÞ;

where seqðX;Y Þ ¼
1; if X ¼ Y ðX;Y : setsÞ;
0; otherwise:

�
ð5Þ

3.3 Metrics on Data Distribution

Next, we define two metrics that represent how rapidly
data are distributed to mobile nodes in the network.

3.3.1 Total Number of Connected Nodes

This metric is from the viewpoint of each node and is
defined as the total number of mobile nodes to which the
node experienced a connection during a specific duration
l0 � t ð1 � l0 � lÞ. If this metric has a large value, the node can
disseminate its data in a wide range (a large number of
nodes), even when the sizes of the partitions are very small,
i.e., the connectivity among nodes is very low in the short
term. This metric represents to how many nodes each node
can disseminate its own data when all data distributions
must be directly done by the data owner. This kind of data
distribution is used in applications in which data transmis-
sions require authentication from the data owner.

Formally, this metric for mobile node Mk is expressed by
the following equation:

NumConnNodek ¼
[l0
i¼1

belðMk; tiÞ
�����

�����: ð6Þ

3.3.2 Total Number of Data-Reachable Nodes

This metric is also from the viewpoint of each node and is
defined as the total number of mobile nodes to which data

sent by the node are reachable during a specific duration
l0 � t. This metric covers cases in which data are transmitted
to nodes that do not directly connect to the sender node but
can be reachable with the help of other relaying nodes. For
example, if mobile node A connects with node B but does
not have a path to C, and then, A disconnects from B but B
newly connects with C, this metric counts not only B but
also C as data-reachable nodes from A. As for the total
number of connected nodes defined above, C is not counted
from A because A has never directly connected to C. This
metric represents to how many nodes each node can
disseminate its own data when data distributions do not
need a direct authentication from the data owner, i.e., data
can be relayed by other nodes even if the owner does not
directly connect to the receiver.

Formally, this metric for mobile node Mk is expressed by
the following equation:

NumReachNodek ¼
[l0
i¼1

Ri

�����
�����;

where Ri ¼
[

Mj2Ni

Ci;l0;Mj
;

Ni ¼ belðMk; tiÞ � C1;i�1;Mk
;

Cs;f;Mj
¼
[f
i0¼s

belðMj; ti0 Þ ðs � fÞ:

ð7Þ

Here, Cs;f;Mj
denotes a set of mobile nodes that Mj have

connected to during the duration from ts to tf . Ni denotes a
set of mobile nodes that Mk first connected to at the
beginning of ti but have never connected to before that.
Thus, Ri denotes a set of mobile nodes that mobile nodes in
Ni connected to from the beginning of ti until the end of the
observation time l0 � t.

Note that these two metrics, the total numbers of
connected nodes and data-reachable nodes, do not repre-
sent the actual numbers of nodes to which data can be
distributed in a real environment. This is because these two
metrics just count the numbers based on the existence of
connections between nodes but take into account neither
time for sending the data nor communication failures.
Therefore, these two metrics represent the ideal numbers
(upper bounds) of nodes to which data can be distributed.
We adopt them in order to remove the influence of the
underlying network protocols and network conditions.

3.4 Discussion

As mentioned in Section 2, our proposed metrics are neither
the smallest nor complete for quantifying the impact of
mobility on data availability. Also, our approach to
quantifying data availability using only partitions and node
connections has some limitations. In this section, we discuss
these issues.

3.4.1 Redundancy and Correlation between the Metrics

There is an obvious redundancy between “average size of
partitions” and “distribution of partition sizes” because the
average size can be calculated from the histogram of sizes of
partitions. Also, there are correlations between several pairs
of metrics, i.e., 1) “sizes of partitions belonged to” and
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“change in size of partitions belonged to;” 2) “sizes of
partitions belonged to” and “total number of connected
nodes” (“total number of data-reachable nodes”); and
3) “total number of connected nodes” and “total number
of data-reachable nodes.” As mentioned in Section 2, we
aim to briefly grasp the qualitative characteristics (not
qualitative distinctions) of given mobility patterns. For this
aim, we intentionally allow the redundancies and correla-
tions among our metrics. For example, both the average and
distribution of partition sizes are useful for protocol
designers to intuitively grasp the characteristics of the
mobility pattern. Moreover, correlations among metrics are
very useful for grasping the qualitative characteristics by
comparing these correlated metrics for different mobility
patterns, i.e., correlations can be positively used. For
example, as described later in Section 4, the MM model
gives rapid growth of “total number of connected nodes”
(“total number of data-reachable nodes”), while it gives
relatively low “sizes of partitions belonged to.” This fact is
against the correlation between these metrics, and thus, well
represents the characteristics of the MM model.

3.4.2 Limitations of the Metrics

Our proposed metrics do not take into account commu-
nication failures or time for sending the data, i.e., network
bandwidths between nodes and sizes of exchanged data.
We also do not take into account the status of connections
between individual pairs of nodes, e.g., how steady each
connection is. Taking these two factors into account might
improve the accuracy of quantifying data availability.
However, we ignore these factors to remove the influence
of the underlying network protocols and to observe the
influences of mobility on data availability in perspective.
Thus, we have adopted our approach in order to quantify
the influences of mobility and briefly grasp the qualitative
characteristics of mobility patterns.

As mentioned in Section 2, while some conventional
works use link status as a performance metric, data
availability is affected by network partitioning but not only
by connection or disconnection of a single wireless link.
Therefore, we have proposed the metric “change in size of
partitions belonged to” to quantify the stability of partitions
(node groups) for data sharing in a large sense. Time during
which a partition is stable is briefly estimated as the ratio of
no change in size. Reliability of each node with which data
are shared is estimated by the metric “distribution of
connected nodes.”

We believe that our approach makes sense to make clear
the scope of this paper, i.e., quantifying the influences of
mobility and briefly grasping the qualitative characteristics
of mobility patterns. Of course, our proposed metrics have
limitations and we cannot concretely calculate the perfor-
mance criteria such as the success ratio of data requests and
the traffic and delay of data diffusion by only using our
proposed metrics. To concretely calculate these criteria, we
have to provide other detailed conditions such as network
bandwidth, hopping delay at each node, impact of radio
signal interference, and size of data.

Here, there are trade-off relationships between the
rapidness of data diffusion and the traffic (or overhead)
for data diffusion protocols and between the success ratio of

data access and the traffic (or energy consumption) for
replication protocols. The trade-off points depend on the
system or application requirements. Therefore, we cannot
determine the trade-off points between performance criteria
without the information on the system conditions and that
on the system (application) requirements. This is the reason
that we only provide the performance metrics to briefly
grasp the qualitative characteristics of mobility patterns.

Note that our metrics are independent of the assumption
that we do not consider some factors such as communication
failures, time for sending the data, and status of connections
of individual pairs of nodes. Thus, we can easily extend our
approach by integrating our metrics and these factors, e.g.,
ignoring wireless links with lower stability, bandwidth, or
connection time than the predetermined thresholds. We will
consider such an extension and concrete protocol designs
based on the extension in our future work.

4 EXPERIMENTS

In this section, we report the results of some experiments
that measure the proposed metrics assuming several
typical mobility models: random walk, random waypoint,
Manhattan mobility, and reference point group mobility.
First, we explain these typical mobility models. Then, we
show the experimental results. We also report the results of
experiments using two kinds of real traces.

4.1 Mobility Models

4.1.1 Random Walk (RW)

This is one of the simplest mobility models and is often
used in simulation experiments for MANETs. In this model,
at every unit of experimental time, each mobile node
randomly determines a movement direction from all
directions, and randomly determines a movement speed
from 0 to V [m/s]. It is known that in the long term, this
model offers very low mobility similar to vibrating in the
same position, because mobile nodes randomly change
movement direction.

4.1.2 Random WayPoint (RWP)

This is one of the most popular mobility models for
MANET researchers. In this model, each node remains
stationary for a pause time S [s]. Then, it selects a random
destination in the entire area and moves to the destination
at a speed determined randomly between 0 and V [m/s].
After reaching the destination, it again pauses, and then,
repeats this behavior. It is known that in this model, mobile
nodes tend to gather at the center of the area, and the
movement speed tends to converge to zero (very low).

4.1.3 Manhattan Mobility (MM)

This model emulates the node movement on streets where
nodes only travel on the pathways in the map. Manhattan
grid maps of horizontal and vertical streets are used to
restrict the node movement. On each street, the mobile
nodes move along the lanes in both directions. At each
intersection, the mobile nodes choose their directions and
speed (0 to V [m/s]) randomly.

4.1.4 Reference Point Group Mobility (RPGM)

This model is used to model group mobility. Each group has
a logical “center” called a reference point and group members
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(nodes). Each reference point moves according to the RWP
model with V 0 [m/s] (maximum speed) and S0 [s] (pause
time). In each group, nodes are uniformly distributed within
a certain radius R from the reference point. To achieve this,
we assume that each node moves according to the RW model
with V [m/s] (maximum speed) within that range. Specifi-
cally, a node’s movement vector is composed by adding the
movement vector based on the RW model for the node to that
based on the RWP model for the reference point.

4.1.5 Random WayPoint with Locality (RWP-L)

This model is same as the RWP model except for the way to
choose destinations. In this model, each mobile node has a
home area, which is a subarea in the entire area. When
determining a destination, it chooses a random destination
inside the home area with high probability H and one
outside the region with probability 1�H. We call H the
home area ratio.

4.2 Simulation Setting

Mobile nodes exist in an area 2;500 ½m� � 2;500 ½m�. The
number of mobile nodes in the entire network is m

(M ¼M1;M2; . . . ;Mm). For the MM model, we use a grid
road map with six vertical and horizontal streets, i.e.,
25 blocks of the same size (500 ½m� � 500 ½m�), as shown in
Fig. 2a. For the RPGM model, we assume that there are
25 reference points rp1; . . . ; rp25, and Mjðj ¼ 1; . . . ;mÞ sets
its reference point as rpdj=ðm=25Þe. For the RWP-L model, the
area is divided into 25 regions of 500 ½m� � 500 ½m�,
R1; . . . ; R25, as shown in Fig. 2b, and Mjðj ¼ 1; . . . ;mÞ sets
its home area as region Rdj=ðm=25Þe.

At the beginning of the simulations, the initial position of
each mobile node is randomly determined in the space
where the node can exist, i.e., on a road in the MM model

and within the home area in the RWP-L model. We set T as
10,000,000 [s] and t as 1 [s], i.e., l ¼ 10;000;000. We neglect
the first 1,000 [s] to remove the impact of the initial state and
observe our proposed metrics during 10,000,000 [s], i.e.,
from time 1,000 [s] to 10,001,000 [s].

Table 1 summarizes the parameters and their values
used in the simulation experiments. The parameters are
basically fixed to constant values, but some are changed in a
range represented by the parenthetic values in each of the
simulation experiments.

4.3 Results in Default Setting

4.3.1 Simulation Results

First, we show the experimental results in the default
setting, i.e., m ¼ 300, V ¼ V 0 ¼ 4 [m/s]. Table 2 and Fig. 3
show the average size of partitions and the distribution of
partition sizes in the five mobility models. In Fig. 3, the
horizontal axis indicates the partition size and the vertical
axis indicates the ratio of partitions with the corresponding
partition size to all the partitions formed during the entire
observation time T . We separately show the results as two
graphs where the scales of the vertical and horizontal axes
are changed due to the skew of distribution.

Table 2 shows that the average size of partitions is much
affected by the adopted mobility model. The average size
in the RWP model is larger than the RW model due to the
well-known characteristic of the RWP model that nodes
tend to gather in the center of the area, which results in the
formation of a large partition. This fact can also be seen in
Fig. 3, i.e., the RWP model experienced large partitions
with more than 20 nodes more often than the RW model.
To confirm this, we pick the size of the largest partition
formed during the whole observation time T and the ratio
of partitions with only one node in Table 3. In this table,
the first row shows the ratio of partitions with one node
and the second row shows the maximum size. It can be
seen that the maximum size in the RWP model is much
larger than the RW model, whereas the ratios of partitions
with one node are almost the same.
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Fig. 2. Grid road map used in MM and home areas for RWP-L.

TABLE 1
Parameter Configuration

Fig. 3. Distribution of partition sizes (m ¼ 300, V ¼ 4 [m/s]).

TABLE 2
Average Size of Partitions (m ¼ 300, V ¼ 4 ½m=s�)

Authorized licensed use limited to: National Cheng Kung University. Downloaded on March 18,2010 at 03:07:35 EDT from IEEE Xplore.  Restrictions apply. 



Comparing the RWP and the RWP-L models, partitions
formed in the RWP-L model tend to be smaller than the
RWP model, as shown in Tables 2 and 3 and Fig. 3. This is
because in the RWP-L model, nodes that have the same
home area tend to gather in the center of the home area, but
those with different home areas tend to be disconnected. As
expected, the RPGM model forms much larger partitions
than other models. In addition to high connectivity among
nodes in the same group, the reference points tend to gather
in the center of the area because they move according to the
RWP model, which results in the formation of very large
partitions.

An interesting fact can be seen for the MM model. It
provides higher average partition size than the RW, RWP,
and RWP-L models as shown in Table 2, while the
maximum partition size is not large (second lowest) as
shown in Table 3. Thus, the MM model forms a large
number of partitions with modest numbers of nodes, as is
clearly shown in Fig. 3. These characteristics are due to the
highly restricted mobility in the MM model. Since mobile
nodes are allowed to move only in vertical or horizontal
directions, they tend to connect in line. This is advanta-
geous to avoid nodes being isolated, i.e., forming partitions
with only one node, but harmful to forming large partitions
since the node density is rarely high.

Next, we move on to the metrics for each mobile node.
Since nodes that have a different home area in the RWP-L
model behave in different ways, we pick two different
nodes M1 and M145. The home areas of M1 and M145 are R1

(a corner in the entire area) and R13 (the center), respec-
tively, in the RWP-L model. These two nodes are also in
different groups rp1 and rp13 in the RPGM model. Here, it
should be noted that we have checked the results for all
mobile nodes in our experiments and found that all nodes
in the RW, RWP, MM, and RPGM models and nodes with
the same home area in the RWP-L model show almost the
same results for every metric. As for the RWP-L model,
nodes with different home areas behave differently, espe-
cially, the results show the biggest difference between the
two extreme cases of the home area being at a corner and
the center. Thus, we chose the two extreme cases and a node
in each of the two cases randomly.

Fig. 4 shows the sizes of the partitions M1 and M145

belonged to in the five mobility models. In Fig. 4, the
horizontal axis indicates the partition size and the vertical
axis indicates the ratio of time that the node belonged to
partitions with the corresponding partition size to the entire
observation time T . From Figs. 4a and 4b, in the four
mobility models except the RWP-L model, both M1 and
M145 show almost the same characteristics as the global one,
although the characteristics in Fig. 3 are much clearer due to
the statistical effect. This is because in each of the four

models, every mobile node moves according to the same
rule. As for the RWP-L model, M1 and M145 behave in
different ways. Specifically, it can be seen from the right
graphs that M145 often belonged to larger partitions than
M1. This is because M145 often located near the center of the
area and had more chances to connect to other nodes than
M1, whose home area is a corner of the area.

Fig. 5 shows the change in size of the partitions M1 and
M145 belonged to in the five mobility models. In Fig. 5, the
horizontal axis indicates the change in partition size and the
vertical axis indicates the ratio of time that the node
experienced the corresponding change to the entire ob-
servation time T . Table 4 shows the ratio of not changing in
size, i.e., ChgSizePark;0 ðk ¼ 1; 145Þ, in the first row, and the
maximum changes in both cases, increase and decrease, that
the node experienced in the second row. The results show
that in the two models based on random waypoint in the
entire area, RWP and RPGM, nodes often experienced large
changes in size of their partitions. Especially, since in the
RPGM model, nodes form very large partitions and move in
groups, they experienced much larger changes than nodes
in other models. The ratio of not changing in size is very
high in the MM model because nodes moving in line form
partitions and their connectivity is high. In the RW model,
while the ratio of no change is not very high, the maximum
changes are the smallest among the five models. This is
because this model provides very low mobility, i.e., nodes
stay at almost the same position in the long term. Thus,
nodes often experienced small changes but the global
network topology rarely changed. Similar to the result in
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TABLE 3
Ratio of Partitions with One Node and

Maximum Partition Size (m ¼ 300, V ¼ 4 ½m=s�)

Fig. 4. Sizes of partitions belonged to (m ¼ 300, V ¼ 4 [m/s]). (a) M1.
(b) M145.
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Fig. 4, except for the RWP-L model, two nodes M1 and M145

give almost the same characteristics. In the RWP-L model,
nodes whose home area is located at an area corner, e.g.,
M1, form small partitions, and thus, the changes in size
become small.

Fig. 6 shows the distribution of connected nodes for M1

and M145 in the five models. The horizontal axis indicates
the suffix of a node identifier, e.g., 12 denotes node M12, and
the vertical axis indicates the ratio of time that node M1 or
M145 is connected to the corresponding node to the entire
observation time T . The result shows that in the RW, MM,
and RWP models, since each node moves independently of
the others, M1 and M145 connected almost uniformly to all
nodes. In the RPGM model, M1 belonged to a group
consisting of 12 nodes M1; . . . ;M12, and M145 belonged to a
group consisting of M145; . . .M156. Thus, both M1 and M145

were connected to nodes in the same group for a long time.
In the RWP-L model, M145 connected to nodes with the
same home area for a long time. M1 also shows the same
feature but it is not conspicuous compared with M145. This

is due to low connectivity in the area. Here, M145 also
connected to some other nodes, e.g., M246, for a long time.
From a detailed investigation of the simulation result, we
found that this accidentally happened by M145 and these
nodes choosing very slow moving speeds when they were
close to each other.

Next, we show the results of the two metrics on data
distribution. Fig. 7 shows the total number of connected
nodes for M1 and M145 in the five mobility models when
varying the observation time l0 � t. Here, since this metric is
heavily affected by the nodes’ initial positions and movement
at an early stage, we show the results for M2 and M146 for
reference, where M2 and M146 in the RWP-L model have the
same home area as M1 and M145, respectively. In this figure,
the horizontal axis indicates the observation time l0 � t, and
the vertical axis indicates the total number of nodes to which
M1;M2;M145, and M146 connected during the observation
time. From the result, while different nodes show different
characteristics as expected, we can also observe several
interesting common facts. First, the RW model gives a much
lower number of connected nodes than others for all the
nodes. This is due to low mobility in this model. The two
models, RWP and RPGM, based on random waypoint in the
entire area give higher values than others due to the two
advantages of high mobility and large partitions. As for the
RWP-L model,M1 andM2 with the home position at a corner
were slow to grow the total number of connected nodes
because they had little chance to connect to others, e.g., the
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Fig. 5. Change in size of partitions belonged to (m ¼ 300, V ¼ 4 [m/s]).
(a) M1. (b) M145.

TABLE 4
Ratio of No Change in Size and

Maximum Change (m ¼ 300, V ¼ 4 ½m=s�)

Fig. 6. Distribution of connected nodes (m ¼ 300, V ¼ 4 [m/s]). (a) M1.
(b) M145.
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case when they moved beyond the home area (10 percent).

On the contrary,M145 andM146 in the RWP-L model were fast

to grow the total number of connected nodes. This is because

nodes at the center area have high connectivity and many

nodes that go beyond their home area pass through the center

area, which is a characteristic of random waypoint that nodes
tend to gather at the center of the area. In Figs. 7c and 7d, the
RWP-L model grows faster than the MM model but is caught
up to afterward. This is because in the RWP-L model, it is
very difficult for nodes to visit all areas due to the locality of
mobility. On the contrary, since the MM model forms a large
number of small partitions, it is difficult to drastically grow
the number of connected nodes in a short period but it can
make a steady increase. It should also be noted that the two
models RPGM and RWP-L, which form groups with high
connectivity, often experienced a sudden increase in the total
number of connected nodes, i.e., a step in the graph. This
signifies that the node encountered another group.

Fig. 8 shows the total number of data-reachable nodes for
M1 and M145 in the five mobility models when varying the
observation time l0 � t. Since M2 and M146 show almost the
same results as M1 and M145, respectively, we omit their
results here. In this figure, the horizontal axis indicates the
observation time l0 � t, and the vertical axis indicates the total
number of data-reachable nodes during the observation
time. This result shows that in all the mobility models, the
growing speed of the total number of data-reachable nodes
is much faster than that of the total number of connected
nodes. Thus, aggressive data dissemination using other
nodes is very effective for rapidly distributing data. We can
also observe an interesting fact by comparing the RWP and
RPGM models that group mobility does not much contribute
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Fig. 7. Total number of connected nodes (m ¼ 300, V ¼ 4 [m/s]). (a) M1.

(b) M2. (c) M145. (d) M146.

Fig. 8. Total number of data-reachable nodes (m ¼ 300, V ¼ 4 [m/s]).
(a) M1. (c) M145.
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to the increase of the total number of data-reachable nodes,
i.e., it is not very helpful for rapidly distributing data. On the
contrary, the MM model was very fast to grow the total
number of data-reachable nodes, while it was relatively slow
to grow the total number of connected nodes.

4.3.2 Convergence of the Results

In our experiments, we measured our proposed metrics to
quantify the influence of mobility on data availability and
briefly grasp the qualitative characteristics of the mobility
patterns. The values themselves obtained by the experi-
ments are not very important but their qualitative char-
acteristics are important. However, we realize that it is
better to examine the reliability of the simulation results,
i.e., the confidence intervals for the results. Therefore, we
calculated breadths of 90 percent confidence intervals for
the simulation results using the Batch Means method [6],
where the batch size is 1,000,000 units of time and the
number of batches is 10. Here, all of our metrics except for
“average size of partitions” are histograms or snapshots of
certain observations. As for snapshots, i.e., “total number of
connected nodes” and “total number of data-reachable
nodes,” we cannot calculate the confidence intervals. As for
histograms, we can calculate the confidence intervals of the
observations (ratios of the corresponding values). Of course,
the confidence intervals of the observations that rarely
occur obviously become very large and it is impossible to
run the simulations for a long enough time to obtain
converged results with low confidence intervals for all
possible observations.

Due to the limitation of space, we briefly explain the
examination results as follows. The results show that the
simulations were sufficiently converged for “average size of
partitions,” where the breadths of the confidence intervals
were at most a few percent of the average values for all the
mobility models. As for histograms for the entire network,
“distribution of partition sizes,” breadths of the confidence
intervals were a few percent in most cases and at most
10 percent of the average values for the observations that
often occurred, i.e., where the partition sizes were less than
20. When the partition sizes were very large, the breadths of
the confidence intervals were also large. This is obvious
because such cases rarely occurred in the simulations.

As for histograms for each mobile node, “sizes of
partitions belonged to,” “change in size of partitions
belonged to,” and “distribution of connected nodes,” the
breadths of the confidence intervals were relatively large
and more than 10 percent of the average values in most
cases. Specifically, as for “sizes of partitions belonged to,”
we observed only a few cases in the RW, RWP, and RWP-L
models where breadths of the confidence intervals were less
than 5 percent of the average values. In the RPGM and MM
models, the breadths of the confidence intervals were more

than 10 percent in all cases. As for “change in size of
partitions belonged to,” breadths of the confidence intervals
were less than 5 percent of the average values in almost
every mobility model only where the change in size is zero.
As for “distribution of connected node,” the breadths of the
confidence intervals were less than 5 percent of the average
values only for mobile nodes in the same group in the
RPGM model.

4.4 Results in Other Settings

Next, we show the experimental results when changing the
setting of the number of nodes m and the movement speed
V and V 0. We examine two cases: one is for examining the
impact of the movement speed, m ¼ 300 and V ¼ V 0 ¼
10 [m/s], and the other is for examining the impact of the
node density, m ¼ 500 and V ¼ V 0 ¼ 4 [m/s].

Table 5 and Fig. 9, respectively, show the average partition
size and the distribution of partition sizes in the five mobility
models for both cases. We also show the ratio of partitions
with one node and the maximum partition size in Table 6. By
comparing the default setting (m ¼ 300, V ¼ V 0 ¼ 4 [m/s])
and the case with higher speed (m ¼ 300,V ¼ V 0 ¼ 10 [m/s]),
every mobility model gives almost the same results in both
cases, and thus, we can confirm that the movement speed has
little impact on the partition sizes. On the contrary, by
comparing the default setting and the case with more mobile
nodes (m ¼ 500, V ¼ V 0 ¼ 4 [m/s]), it is shown that the
number of mobile nodes, i.e., node density, greatly affects the
partition sizes. However, the characteristics of the five
models described in the previous section were basically
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Fig. 9. Distribution of partition sizes in other settings. (a) m ¼ 300, V ¼
10 [m/s]. (b) m ¼ 500, V ¼ 4 [m/s].

TABLE 5
Average Size of Partitions in Other Settings
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preserved in the case with more nodes except that the RWP

model often forms a large group of mobile nodes.
Fig. 10 shows the distribution of sizes of partitions

mobile node M145ð2 R13Þ belonged to in the case with
higher speed (m ¼ 300, V ¼ V 0 ¼ 10 [m/s]) and that for

M241ð2 R13Þ in the case with more nodes (m ¼ 500, V ¼
V 0 ¼ 4 [m/s]). In the following, we focus on only one node

that has been randomly chosen among nodes whose home

area is the center of the entire area in the RWP-L model.
These results show almost the same characteristics as the

global ones shown in Fig. 9. Fig. 10a shows similar but
clearer characteristics than Fig. 4b because higher mobility

provides faster convergence of the simulation results.
Fig. 11 shows the change in size of partitions M145

belonged to in the case with higher speed (m ¼ 300, V ¼
V 0 ¼ 10 [m/s]) and that for M241 in the case with more

nodes (m ¼ 500, V ¼ V 0 ¼ 4 [m/s]). We also show the ratio
of not changing the partition size and maximum change in

the five models in Table 7. From these results, we can

confirm that both the movement speed and the node

density greatly affect the change in the size of the partitions

belonged to. By comparing Figs. 11a and 5b, relative

differences among the mobility models are preserved

independent of the movement speed, while higher speed

basically gives a larger change in size. On the other hand, it

is shown by Fig. 11b and Table 7 that the increase in nodes

has relatively lower impact on the RPGM and MM models;

thus, the results of the RW, RWP, and RWP-L models got

closer to those of the RPGM model as shown in the center

graph of Fig. 11b. Moreover, a large group of mobile nodes

formed in the RW model (as shown in Figs. 9b and 10b)

causes more frequent big changes in the partition size.
Fig. 12 shows the distribution of connected nodes forM145

in the case with higher speed (m ¼ 300, V ¼ V 0 ¼ 10 [m/s])

and that for M241 in the case with more nodes (m ¼ 500,

V ¼ V 0 ¼ 4 [m/s]). Fig. 12a shows a similar result to that in

Figs. 6b. Fig. 12b shows that while the characteristics of each

model are preserved, the values just become higher.
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TABLE 6
Ratio of Partitions with One Node and

Maximum Partition Size in Other Settings

Fig. 10. Sizes of partitions belonged to in other settings. (a) m ¼ 300,
V ¼ 10 [m/s]. (b) m ¼ 500, V ¼ 4 [m/s].

Fig. 11. Change in size of partitions belonged to in other settings.

(a) m ¼ 300, V ¼ 10 [m/s]. (b) m ¼ 500, V ¼ 4 [m/s].

TABLE 7
Ratio of No Change in Size and

Maximum Change in Other Settings
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Fig. 13 shows the total number of nodes to which M145

and M241 connected. Fig. 14 shows the total number of data-
reachable nodes for these two nodes. From Figs. 13a and
14a, it is confirmed that higher movement speed is effective
for data distribution, while relative differences among the
mobility models are preserved. From Figs. 13b and 14b, it
can be seen that the increase in node density is effective for
the RW, RWP, and RWP-L models. The RWP model
outperforms the RPGM model, and the RWP-L model gives
closer performance to the RPGM model than that in the
default setting. The RW model benefits most from the
increase in node density.

4.5 Experiments Using Real Traces

As mentioned in Section 1, the main contribution of this
paper is a proposal of the performance metrics to quantify
the impact of mobility on data availability, where we do
not assume any specific mobility models nor specific
movement patterns. Therefore, our experiments using some
well-known mobility models are just examples of how to
apply the proposed metrics to a given mobility model and
how to examine the impact of the mobility pattern. In this
section, we present the results of some experiments using
real mobility traces as other examples of applying our
proposed metrics.

In these experiments, we used two kinds of real traces:
taxi cabs and humans. The first traces were given by the
Cabspotting project [4] and contain GPS mobility traces of

300 taxi cabs traveling throughout the Bay Area of San
Francisco for 50 hours. The second traces were given by the
NCSU Mobility and DTN Group [28], and contain GPS
mobility traces of 82 people walking on the campus of the
Korea Advanced Institute of Science and Technology
(KAIST) for 384.5 minutes. We calibrated the time and
spatial scale in these traces to achieve almost the same node
density and movement speed as our experiments in
Section 4.3, i.e., (300 nodes in an area 2;500 ½m� � 2;500 ½m�
and 2 [m/s] on average).

Tables 8, 9, and 10 and Figs. 15, 16, 17, 18, 19, and 20
show the experimental results. As for the metrics for each
mobile node, we selected three typical nodes that behaved
differently from each other.

In summary, we can confirm that the two kinds of real
traces basically show different characteristics from all the
typical mobility models used in our experiments. The
biggest reason is that there is a strong hot spot in the area
for both real traces, i.e., the central downtown in the cab
traces and the department building in the human traces.
Specifically, there constantly exist a large number of mobile
nodes in a specific region, which results in forming a very
large group of mobile nodes. This fact can be seen from the
results in Figs. 15 and 16, and Table 9, where there exists a
group with a large number of nodes (about 70-80 percent of
all nodes) with relatively high ratios. Since the ratio of
partition with one node is high, it is shown that nodes
basically stayed in a specific area and formed a large group,
and sometimes, moved to another area alone, e.g., brought a
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Fig. 12. Distribution of connected nodes in other settings. (a) m ¼ 300,
V ¼ 10 [m/s]. (b) m ¼ 500, V ¼ 4 [m/s].

Fig. 13. Total number of connected nodes in other settings. (a) m ¼ 300,
V ¼ 10 [m/s]. (b) m ¼ 500, V ¼ 4 [m/s].
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passenger somewhere in the cab case. This fact also can be
seen from the results in Fig. 17 and Table 10, where nodes
frequently experienced a small change in partition size, i.e.,
other nodes left a big group, and sometimes a big change,
i.e, the nodes themselves left a big group. Therefore, every
mobile node experienced a sudden increase in the total
numbers of connected and data-reachable nodes when it
connected to the large group (see Figs. 19 and 20).

Big differences in distribution of connected nodes
between three nodes in the human traces are due to the
short tracking time, where person M1 always stayed in the
big group, while person M3 did not come back to the group
during the tracking time.

Among the typical mobility models, only the RWP model
when the node density is high (m ¼ 500) showed slightly
similar characteristics to the real traces because it also forms
a large group of mobile nodes at the center of the area.

4.6 Discussions

In this section, we summarize the experimental results and
discuss their outcomes.

4.6.1 RW Model

The RW model forms many small partitions but rarely
forms large ones when the node density is not very high.
Moreover, since the mobility of nodes is very low in the
long term, it shows the worst results for the two metrics on
data distribution (i.e., the total number of connected nodes
and that of data-reachable nodes). Thus, this model is not
good in terms of both aspects, storage capacity and data
distribution, although these drawbacks can be alleviated by
the increase of node density. The low mobility of this model
is advantageous in terms of the stability of partitions.

Therefore, when a researcher or engineer designs a data
replication protocol and the movement pattern in the
assumed environment follows the RW model, the protocol
should not rely on data sharing with a large number of
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TABLE 9
Ratio of Partitions with One Node and
Maximum Partition Size (Real Traces)

TABLE 10
Ratio of No Change in Size and
Maximum Change (Real Traces)

Fig. 14. Total number of data-reachable nodes in other settings.
(a) m ¼ 300, V ¼ 10 [m/s]. (b) m ¼ 500, V ¼ 4 [m/s].

Fig. 15. Distribution of partition sizes (real traces). (a) Cab traces.
(b) Human traces.

TABLE 8
Average Size of Partitions (Real Traces)
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nodes but should share data with a small number of
connected nodes.

When designing a data diffusion protocol, it should
aggressively disseminate data to connected mobile nodes at
the sacrifice of the increase of traffic. Moreover, if nodes can
control their communication range by changing the radio
signal strength, the communication range should be set
longer in order to increase the node density. Of course,
when the node density is very high, blind data dissemina-
tions might cause a big problem; thus, the protocol should
consider effective data disseminations to reduce the traffic.

4.6.2 RWP Model

The RWP model often forms a few large partitions because
nodes tend to gather in the center of the area. However, this
model also causes many isolated nodes that do not connect
to any other nodes. This fact can be seen from the
experimental results, which showed a high ratio of
partitions with one node and a very large maximum
partition size for this model. Thus, in terms of data storage
capacity, this model is good when the node belongs to a
large partition. However, this model sometimes experiences
big changes in partitions.

When designing a data replication protocol where the
movement pattern follows the RWP model, each node
should carefully determine with which nodes it shares data
by considering several factors such as the number of
neighboring nodes and the stability of wireless links.
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Fig. 16. Sizes of partitions belonged to (real traces). (a) Cab traces.
(b) Human traces.

Fig. 17. Change in size of partitions belonged to (real traces). (a) Cab
traces. (b) Human traces.

Fig. 18. Distribution of connected nodes (real traces). (a) Cab traces.
(b) Human traces.
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On the other hand, this model is very effective in terms

of data distribution because nodes choose the destinations
to move randomly in the entire area; thus, they move

around in a wide range. When designing a data diffusion

protocol, the designer does not need to be very nervous for
the performance in terms of distribution rapidness. Rather,

the protocol should address the reduction of unnecessary

data redistribution when mobile nodes newly connect with
each other in order to reduce excessive data traffic.

4.6.3 MM Model

The MM model showed several interesting features due to

its restricted mobility. First, similar to the RW model, this
model forms many small partitions but rarely forms large

ones when the node density is not very high. However, this
model causes much fewer isolated nodes than other models;

thus, the average partition size is relatively large. Moreover,

the ratio of not changing the size of partitions is very high
and the maximum changes in size are small. Totally, this

model works well in terms of data storage capacity and

partition stability, while the maximum capacity is small.
Therefore, when designing a data replication protocol

where the movement pattern follows the MM model, it is

effective to share data among nodes in the same partition.
In terms of data distribution, the MM model basically

gives a modest total number of connected nodes, which is

lower than those in the RWP and RPGM models that form

large partitions. In addition, the total number of connected
nodes shows a steady increase as time passes in this model.
As for the total number of data-reachable nodes, it gives
good results similar to the RWP and RPGM models.

When a data diffusion protocol is designed and the node
density is not very high, aggressive data dissemination is
effective in terms of distribution rapidness. Contrary to the
RWP model, the protocol designer does not need to be very
nervous to reduce data redistribution because the max-
imum capacity of partitions is basically small in this model.
Rather, the protocol should address how each mobile node
effectively distributes data items to nodes moving on the
incoming lane and to other nodes that the node meets at an
intersection within a limited time when the wireless
connection is available. This issue includes a problem how
to effectively select significant data items to be distributed.
Of course, when the node density is very high, blind data
disseminations might cause a big problem; thus, the
protocol should consider effective data disseminations to
reduce the traffic.

4.6.4 RPGM Model

The RPGM model gives a much higher average and
maximum partition size than other models and the second
lowest ratio of partitions with one node (following the MM
model). These features are due to the combined advantages
of random waypoint and group mobility and show that this
model is the best in terms of data storage capacity. As a
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Fig. 19. Total number of connected nodes (real traces). (a) Cab traces.
(b) Human traces.

Fig. 20. Total number of data-reachable nodes (real traces). (a) Cab
traces. (b) Human traces.
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negative effect of the large partition size, nodes often
experienced big changes in partitions. However, as the
experimental results on the distribution of connected nodes
showed, it provides very high connectivity among nodes in
the same group. Therefore, when designing a data replica-
tion protocol where the movement pattern follows the
RPGM model, it is effective to share data among nodes in
the same group. It should be careful to share data with
nodes in other groups.

In terms of data distribution, this model gives good
performance due to its two advantages: high mobility and
large partitions. Similar to the RWP model, when designing
a data diffusion protocol, the designer does not need to be
very nervous for the performance in terms of distribution
rapidness. Rather, the protocol should address the reduc-
tion of unnecessary data redistribution.

4.6.5 RWP-L Model

The RWP-L model basically gives relatively low average
and maximum partition sizes due to low connectivity
among nodes in different home areas. Thus, in terms of data
storage capacity, this model is not very good. However, it
gives lower change in size of partitions. The most
remarkable feature of this model is unfairness among nodes
according to their home areas. For all the metrics, the node
whose home area is the center of the entire area gave better
performance than the node whose home area is a corner of
the entire area.

Therefore, when designing a data replication protocol
where the movement pattern follows the RWP-L model and
the node density is not very high, it is effective to share data
among nodes in the same partition, especially, those having
the same home area. Moreover, it is preferable that mobile
nodes with different home areas adopt different policies for
data replication. For example, since mobile nodes whose
home area is the center of the entire area have a strong
connectivity with other nodes, they can rely on the connected
nodes for sharing data more than those at a corner.

In terms of data distribution, this model basically has the
weakness that nodes have difficulty connecting to all nodes
due to the movement locality. Moreover, the total number
of connected nodes is greatly affected by the increase in
node density because the increased number of nodes can
bridge isolated partitions. Therefore, when designing a data
diffusion protocol, similar to the RW model, it should
aggressively disseminate data to connected mobile nodes,
especially for those with different home areas. Moreover, if
nodes can control their communication range, it should be
set longer in order to increase the node density. Of course,
when the node density is very high, the protocol should
consider effective data disseminations to reduce the traffic.

4.6.6 Examination of a Data Diffusion Protocol

To examine the above discussions, we show the result of a
simulation experiment regarding the performance evalua-
tion of a data diffusion protocol for the five typical mobility
models. Due to the limitation of space, we only show the
performance of a data diffusion protocol under a specific
network configuration, i.e., the default setting in Section 4.3.

In this experiment, we evaluated the performance of a
simple data diffusion protocol in which data items are

reflooded with a certain probability (reflooding probability)
when two mobile nodes newly connect with each other.
More specifically, each mobile node receives all data items
held by the newly connected node and refloods them in the
entire network based on the reflooding probability.

Every mobile node generates a new data item at every
10,000 units of simulation time and the data item becomes
invalid (expired) after 10,000 units of time. We assume that
all data items are very small and every mobile node has
enough storage to store all data items. For the purpose of
simplicity, communication times for these data items are
short enough to be negligible.

We measured two performance metrics, average ratio of
having valid data and total traffic for data diffusion, where we
varied the reflooding probability. Here, for each node and
each data item, we define the ratio of having a valid data
item as the ratio of the time period during which the valid
data item is held by the node to the entire valid time, i.e.,
10,000 units of time. Therefore, the average ratio of having
valid data is defined as the average of the ratios of having a
valid data item for all nodes and all data items generated
during the entire simulation time. This metric represents the
rapidness of data diffusion. The total traffic for data
diffusion is defined as the total hop count for all data
transmissions occurring during the entire simulation time.

Table 11 shows the simulation result. In this table, we
generalized the result of each mobility model based on that
of the RPGM model (represented as 1). The values between
parentheses denote the actual values of the two metrics for
the RPGM model. The result shows that the MM and RWP-
L models provide lower traffic for data diffusion than the
RPGM and RWP models, and the data diffusion rapidness
in these models is more sensitive to the reflooding
probability, i.e., aggressiveness of data diffusion.

Consequently, we can confirm the validity of some
discussions above. We realize that we need more extensive
experiments to apply our proposed metrics to designing
concrete data diffusion and replication protocols. However,
we leave it for future work since it is beyond the scope of
this paper.
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TABLE 11
Performance of Data Diffusion Protocol

(a) Average ratio of having valid data. (b) Total traffic for data diffusion.
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4.6.7 Real Traces

The two kinds of real traces used in our experiments form a
large node group. This shows that nodes basically stayed in
a specific area and formed a large group, and sometimes,
moved to another area alone. In such a case, a data
replication protocol should consider efficient allocation of
replicas in the large group with low traffic. Also, each node
should precisely detect the timing of disconnection from the
group and effectively relocate necessary replicas. As for a
data diffusion protocol, it does not need to deal with fast
diffusion of data items generated in the large group but
should rapidly detect a node newly connected to the group
and one that will be disconnected soon.

Here, we cannot say from the results using the real traces
that all real networks have the same features because the
movement patterns heavily depend on the situations and
applications. Specifically, the two kinds of real traces used in
our experiments are just instances of two specific real
situations, where mobile nodes basically move indepen-
dently of others and they do not collaborate. While
information sharing for a collaborative work such as rescue
operations and military affairs is a typical MANET applica-
tion, the two traces do not represent movement patterns in
such an application. Experiments using various kinds of real
traces will be the first priority in our future work.

5 CONCLUSION

In this paper, we proposed seven metrics to quantify the
influence of node mobility on data availability. Our
proposed metrics can be categorized from two different
perspectives: 1) global or node-centric and 2) capacity/
stability or data diffusion. We also reported results of
experiments that measured the proposed metrics assuming
five typical mobility models: RW, RWP, MM, RPGM, and
RWP-L. From the results, we can confirm that the proposed
metrics are greatly affected by both the mobility model and
system characteristics. The number of nodes, i.e., node
density, greatly affects the data storage capacity and the
movement speed greatly affects the data diffusion. More-
over, there is basically a trade-off relationship between the
stability of partitions and the rapidness of data diffusion.
Here, due to restricted mobility, the MM and RPGM models
break this trade-off relationship and achieve both at the
same time. We also reported results of experiments using
two kinds of real traces.

We believe that the experimental results and knowledge
obtained from the results are very useful for researchers
and engineers for designing various protocols for data
sharing and data diffusion on these typical mobility models.
Even if the mobility pattern of the assumed application is
different from these typical mobility models, its impact on
data availability can be examined in the same way as we
did in our experiments.

As mentioned in Section 3.4, our proposed metrics are
neither the smallest nor complete for quantifying the impact
of mobility on data availability. Also, our approach to
quantifying data availability using only partitions and node
connections has some limitations. As part of future work,
we will further investigate these facts and reconsider the

metrics for some concrete problems. We also plan to
address a issue to qualitatively distinguish between and
match movement patterns in real networks and typical
mobility models by using performance metrics for quanti-
fying the impact of mobility.
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